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Abstract: Often abundance of rare species cannot be estimated with conventional design-based methods,

so we illustrate with a population of blue whales (Balaenoptera musculus) a spatial model-based method to

estimate abundance. We analyzed data from line-transect surveys of blue whales off the coast of Chile, where

the population was hunted to low levels. Field protocols allowed deviation from planned track lines to collect

identification photographs and tissue samples for genetic analyses, which resulted in an ad hoc sampling

design with increased effort in areas of higher densities. Thus, we used spatial modeling methods to estimate

abundance. Spatial models are increasingly being used to analyze data from surveys of marine, aquatic, and

terrestrial species, but estimation of uncertainty from such models is often problematic. We developed a new,

broadly applicable variance estimator that showed there were likely 303 whales (95% CI 176–625) in the study

area. The survey did not span the whales’ entire range, so this is a minimum estimate. We estimated current

minimum abundance relative to pre-exploitation abundance (i.e., status) with a population dynamics model

that incorporated our minimum abundance estimate, likely population growth rates from a meta-analysis of

rates of increase in large baleen whales, and two alternative assumptions about historic catches. From this

model, we estimated that the population was at a minimum of 9.5% (95% CI 4.9–18.0%) of pre-exploitation

levels in 1998 under one catch assumption and 7.2% (CI 3.7–13.7%) of pre-exploitation levels under the other.

Thus, although Chilean blue whales are probably still at a small fraction of pre-exploitation abundance, even

these minimum abundance estimates demonstrate that their status is better than that of Antarctic blue whales,

which are still <1% of pre-exploitation population size. We anticipate our methods will be broadly applicable

in aquatic and terrestrial surveys for rarely encountered species, especially when the surveys are intended to

maximize encounter rates and estimate abundance.
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Resumen: La abundancia de especies raras a menudo no puede ser estimada mediante métodos conven-

cionales basados en diseño, aśı que ilustramos—con una población de ballena azul (Balaenoptera musculus)—
un método basado en modelo espacial para estimar la abundancia. Analizamos datos muestreo en transectos

lineales cerca de la costa de Chile, donde la población fue llevada a niveles bajos por la caceŕıa. Los protocolos

de campo permitieron el desv́ıo de las ĺıneas trazadas para la colección de fotograf́ıas de identificación y

muestras de tejidos para análisis genéticos, lo que resultó un diseño de muestreo ad hoc con incremento

de esfuerzo en áreas con densidades mayores. Por lo tanto, utilizamos métodos de modelaje espacial para

estimar la abundancia. Los modelos espaciales son usados cada vez más para analizar datos de muestreos

de especies marinas, dulceacuı́colas y terrestres, pero la estimación de la incertidumbre de tales modelos

a menudo es problemática. Desarrollamos un estimador de varianza nuevo y de aplicación general que

mostró que por lo menos habı́a 303 ballenas (95% IC 176–625) en la población. Estimamos la abundancia

relativa mı́nima en relación con la abundancia anterior a la explotación (i.e., estatus) con un modelo de

dinámica poblacional que incorporó nuestra abundancia mı́nima estimada, las tasas de crecimiento pobla-

cional probables derivadas del meta-análisis de las tasas de incremento de ballenas barbadas, y dos supuestos

alternativos sobre capturas históricas. De este modelo, estimamos que, en 1998, la población estaba en un

mı́nimo de 9.5% (95% CI 4.9–18.0%) respecto a niveles previos a la explotación bajo un supuesto de captura

y 7.2% (IC 3.7–13.7%) respecto al otro. Por lo tanto, las ballenas azules chilenas probablemente están en

una pequeña fracción de la abundancia previa a la explotación, estas estimaciones de abundancia mı́nima

demuestran que su estatus es mejor que el de ballenas azules en la Antártica, que aun están <1% del tamaño

de la población previa a la explotación. Anticipamos que nuestros métodos serán ampliamente aplicables

en muestreos acuáticos y terrestres de especies raras, especialmente cuando los objetivos del muestreo están

diseñados para maximizar las tasas de encuentro y estimar la abundancia.

Palabras Clave: abundancia, Balaenoptera musculus, modelo espacial, muestreo a distancia, transecto lineal,
raro, varianza

Introduction

Estimating the abundance of rare species (i.e., small pop-
ulation size), elusive animals, and animals that are abun-
dant overall but occur over vast areas at low densities is
a perennially difficult problem (Thompson 2004). Many
endangered taxa fall into this category. For example, one
criterion used by the International Union for Conserva-
tion of Nature (IUCN) to define endangered taxa is a
population estimated to number “fewer than 250 ma-
ture individuals” (IUCN 2001). When few animals are
available to be sampled, it becomes difficult to collect
enough data to reliably estimate population parameters.
This difficulty can occur with both mark-recapture es-
timates and line-transect surveys, which are part of the
distance-sampling family of methods commonly used to
estimate abundance of marine and terrestrial animals
(Buckland et al. 2001). If there are too few sightings
to reliably estimate the width of the rectangular area
searched along a transect (hereafter, the effective strip
width), then abundance cannot be estimated. Low over-
all encounter rates can be ameliorated if information on
animal distribution is available from telemetry studies,
catch records, data from preliminary surveys, or local
knowledge. Such information can be incorporated into
the design of line-transect surveys (Thomas et al. 2007)
to ensure sufficient sighting effort is allocated to high-
density areas to increase the number of sightings suffi-
ciently to allow estimation of the effective strip width
(Williams & Thomas 2009). It may also be necessary to
maximize the number of encounters for other reasons,

such as to collect tissue samples or identify individu-
als for long-term mark-recapture studies. Nevertheless,
for species with poorly known or unpredictable distribu-
tions, it may be impossible to devise in advance a survey
design within a given budget that will ensure enough en-
counters. Instead, it may be necessary to adjust the design
during the survey to increase encounters. The problem
with this ad hoc approach is that such adjustments inval-
idate some of the assumptions of standard line-transect
analyses and require the development of more sophis-
ticated methods of abundance estimation. Nevertheless,
the high cost of shipboard surveys means it is desirable to
generate even rough abundance estimates from surveys
that would, more ideally, be thought of as reconnaissance
or pilot surveys.

We examined data from a sightings survey of a popu-
lation of blue whales (Balaenoptera musculus) off the
coast of Chile to illustrate one solution to the problem
of estimating abundance and conservation status of rare
species. Here status means “abundance relative to pre-
exploitation levels,” which is a standard way of measur-
ing depletion in natural resources and the definition used
by the International Whaling Commission (IWC) to as-
sess whale populations. Many blue whale populations
were hunted to near extinction in the twentieth century,
and although the species was protected internationally
in the 1960s, illegal whaling continued into the 1970s
(Branch et al. 2004). In the southeast Pacific blue whales
were caught primarily off Chile, but some were also
taken off Peru and Ecuador (Clarke et al. 1978; Ramı́rez
1983; Van Waerebeek et al. 1997). Hundreds were caught

Conservation Biology

Volume 25, No. 3, 2011



528 Estimating Abundance of Rare Species

annually in many years from the 1910s–1960s in Chilean
waters (Clarke et al. 1978; Van Waerebeek et al. 1997).
Whaling off Chile, Ecuador, and Peru probably led to
substantial decreases in abundance of blue whales in the
southeast Pacific. This decrease was not thought to have
been as severe as for other populations of blue whales,
but the extent of decreases and of any subsequent recov-
ery remained unknown (Donovan 1984). To better under-
stand the current status of Chilean blue whales and their
relation to other populations of blue whales, a research
cruise was undertaken off Chile in 1997. The cruise was
part of the Southern Ocean Whale and Ecosystem Re-
search (SOWER) program of the IWC (for full details see
Findlay et al. [1998]).

The primary aims of the SOWER surveys were to iden-
tify which subspecies was found in Chilean waters, max-
imize encounters with blue whales, collect genetic and
acoustic data, photograph individuals for identification,
and videotape activity for subsequent behavioral analy-
ses. Two recognized subspecies of blue whales occur in
the Southern Hemisphere: Antarctic (or true) blue whales
(B. musculus intermedia) and pygmy blue whales (B.

m. brevicauda). During the austral summer, nearly all
Antarctic blue whales are in the Southern Ocean south of
55◦S, whereas pygmy blue whales are in more northerly
waters, primarily in the Indian Ocean and around
Australia and New Zealand (e.g., Ichihara 1966;
Branch et al. 2007a; Branch & Mikhalev 2008). Blue
whales also occur off Chile, Peru, and Ecuador, but it
was not clear at the time of the survey whether these blue
whales were Antarctic blue whales, pygmy blue whales
(Aguayo 1974; Van Waerebeek et al. 1997), or an unde-
scribed subspecies (Branch et al. 2007a, 2007b, 2009).
During the survey, 37 groups (45 animals) were recorded
as pygmy blue whales and 2 groups were recorded to the
level of subspecies (Findlay et al. 1998). Visual identi-
fication to subspecies level is unreliable, however, and
genetic data indicate blue whales in the southeastern Pa-
cific (Chilean blue whales), Indian Ocean (pygmy blue
whales), and the Southern Ocean (Antarctic blue whales)
form three distinct groups (Leduc et al. 2007). Therefore
we considered all these sightings to be of undetermined
subspecies.

Although the survey was designed primarily for dis-
crimination of subspecies, researchers on the survey did
collect line-transect data that could be used to estimate
abundance provided the nonrandom placement of search
effort could be addressed statistically. The survey pro-
ceeded as follows. Two vessels departed from Iquique,
Chile (20◦12′S 70◦09′W), in December 1997. One headed
to 18◦30′S and began surveying southward and the other
headed to 38◦S and began surveying northward. The in-
ner boundary of the survey region was defined as the
12-nautical-mile (22.2 km) territorial boundary of Chile.
The outer boundary was delineated by historical catch
distribution limits, the 200 nautical mile (370.4 km) ex-

Figure 1. Sightings of blue whales (filled circles) and

survey track lines (lines within the polygon) made by

vessels surveying in Chilean waters (inset shows South

America south of 15oS) for blue whales from

December 1997 through January 1998. Polygon

outline marks the boundary of the survey region.

clusive economic zone and the time limits of the survey
(Fig. 1).

Prior to the survey, little was known about whale distri-
bution in the area, so a series of systematic track lines was
planned throughout the survey area. To maximize whale
encounters, track-line design was ad hoc and track lines
were not followed rigidly if aggregations of whales were
found. Thus, these data were not collected systematically
and do not lend themselves to conventional line-transect
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analysis (e.g., Buckland et al. 2001). This pragmatic
approach—start by finding the animals—is a common
first stage in pilot studies of rare or poorly studied animals
(McArdle 1990; Barlow et al. 1997; Evans & Hammond
2004). We implemented a model-based method appropri-
ate for use when certain departures from standard line-
transect designs occur and applied this method to our
data to estimate the abundance of Chilean blue whales
within the surveyed region. We devised a new method
of estimating variance from the model-based method, al-
lowing uncertainty in the estimation of effective strip
width (as would also have been estimated by a conven-
tional line-transect analysis) to be explicitly accounted
for when estimating abundance with the spatial model.
We also developed a simple population model that incor-
porated all available information, including these abun-
dance estimates and historical catches, to estimate the
minimum current status of the population relative to pre-
exploitation levels.

Methods

Abundance Estimates

The count method we used (Hedley et al. 1999; Hed-
ley & Buckland 2004; Williams et al. 2006) involves two
separate statistical models. The first model fitted a de-
tection function to the perpendicular sighting distances,
as in a conventional distance-sampling analysis, to esti-
mate the effective strip width. In addition to perpendicu-
lar distance, other variables that may affect detectability
(e.g., adverse sea conditions) may be incorporated in this
model component (Marques & Buckland 2003). Follow-
ing subdivision of the track lines into segments of ap-
proximately equal length, the second model—the spatial
density component of the model—was then fitted. The
number of whales seen in each segment was described
by a generalized additive model (e.g., Wood 2006) with
a spatial smoother and an offset term provided by the
effective area of each segment (i.e., the product of its
effective strip width and its length).

Twenty-six sightings of pygmy blue whales (30 animals
total) were available to model the detection function. We
binned the perpendicular-distance data into intervals of
0.93 km (0.5 nautical miles) and fitted a half-normal de-
tection function to these binned data (Buckland et al.
2001) (Fig. 2). Because of the small number of sightings,
we did not consider more-complex detection functions
that incorporate additional detectability covariates. We
estimated detection probability ( p̂) for each of the sight-
ings within a truncation distance of 5.6 km (3 nautical
miles) with functions written in R (R Development Core
Team 2008).

For the spatial model, we divided the track lines into
segments of approximately 37 km (20 nautical miles).

Figure 2. Blue whale detection function showing

histogram of perpendicular distance data for the

original sightings and the fitted detection probability

(line) predicted by the half-normal model. The

detection function assumes certain detection of blue

whales on the track line and models the decreasing

probability of observing whales as perpendicular

distance increases.

Not all sightings used in the Distance model were avail-
able for the spatial model; 2 of the 26 were outside the
survey area. One sighting occurred the instant observers
began searching, which meant the search effort imme-
diately stopped and the associated segment length was
zero. This left 23 sightings for spatial modeling. Given
that the spatial coverage was reasonable overall, albeit
locally patchy, this was sufficient for fitting the model
and estimating an overall abundance. With such a small
number of sightings, however, we could not draw con-
clusions about spatial distribution within the area—this
would require many more sightings than the number re-
quired to estimate abundance.

The counts per segment showed some evidence of
overdispersion when a Poisson distribution was assumed
in the GAM. We addressed this overdispersion by as-
suming the number of whales seen in each segment
followed a Tweedie rather than Poisson distribution,
and we assumed residual autocorrelation was negligible.
Tweedie distributions offer a single-model approach to
dealing with zero-inflated count data and are readily han-
dled within a GAM framework. They are the subset of
exponential-family distributions for which variance (of
the response, Y ) is proportional to some power (θ)
of its mean (i.e., var[Y ] = ϕE[Y ]θ for some scale parame-
ter ϕ); thus, Gaussian, Poisson, and gamma distributions
are special cases, with θ being 0, 1, and 2, respectively
(Joergensen 1987). Noninteger values of θ are both sta-
tistically valid and practically useful. Formal maximum-
likelihood estimation of θ is possible, but difficult to
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compute (e.g., Candy 2004). In our experience, choos-
ing θ through graphical inspection of residual plots for
different θ is often adequate because overall results are
usually not very sensitive to θ. For these data, θ = 1.1
yielded reasonable fits.

With a logarithmic link function, the resultant spatial
model may be written

E (ni) = exp
[
log

(
2liw p̂

) + s(lati , loni)
]
, (1)

where E(ni) is the expected number of whales in the ith
segment; li is the length of segment i; w is the perpen-
dicular truncation distance; p̂ is the estimated probability
of detection of a blue whale pod; lati and loni denote the
midpoint of the ith segment; and s is a smooth function.
We used the soap-film smooth (Wood et al. 2008) be-
cause we have found it is less prone than other types of
smoothers to make extreme predictions near the edges of
the survey region. For abundance estimation, we used the
spatial model to predict densities at points within a grid
across the survey area and hence estimate abundance.

Estimating the Variance of an Abundance Estimate

Variance in spatial models of abundance is often esti-
mated by resampling, in particular through the use of
parametric, nonparametric, or moving-block bootstraps
(e.g., as in the software Distance, version 6.0; Thomas
et al. 2010). In practice these bootstrapping techniques
frequently yield unstable and biased results when models
are smoothed, especially in cases such as ours in which
survey design precludes easy identification of an inde-
pendent resampling unit (Hedley et al. 1999; Williams
et al. 2006). By using a soap-film smoother, we partially
addressed the problems that can occur when bootstrap-
ping because this smoother is much less prone to make
extreme predictions near the edges of the survey. Never-
theless, bootstrapping spatial models is intrinsically prob-
lematic regardless of which type of smoother is used.
Wood (2006) proposes an alternative Bayesian approach
that is simple to implement and appears not to suffer
from the bias often associated with the bootstrapping
approaches. We adopted this method, which requires
estimation of a prediction matrix and simulation of repli-
cate parameter sets from the posterior distribution of the
estimated parameters of the spatial model.

Spatial models, such as the one we used, include
variability that comes from estimating the parameters
of the detection function. This variability appears via
the offset in the linear predictor because log(effective
area) is based on at least one estimated parameter
(the effective area of each segment is the product of
twice its length and the estimated strip half-width [μ̂]).
Hedley and Buckland (2004) suggest the delta method
(Seber 1982) can be used to combine this component
of the variance with the variance from estimation of the
spatial component. Although pragmatic, this solution is

somewhat ad hoc and rests on an assumption of no corre-
lation between effective strip width and animal density.
We propose instead an integrated method for systemati-
cally propagating the uncertainty through the two mod-
eling stages.

We denoted the parameters used to estimate the de-
tection function as g (y; π) (and hence effective area,
a) by π̂y (where y is perpendicular distance). In consid-
ering the ith segment of effort, we assumed ni whales
were seen and the mean location of the segment was
(lati, loni). Using a spatial smooth s (·) to describe spa-
tial abundance, we wrote the logarithm of the expected
number of whales in the segment as

log[E (ni)] = log(ai) + s(lati , loni)
= log(2liw) + log[pi(π)] + s(lati , loni)
= log(2liw) + log[pi(π + γ)] + Xiβ, (2)

where γ is (π − π̂y) and X is the design matrix associated
with the smoother. Because the first derivative of a func-
tion f(x) may be approximated by [ f (x + δ) − f (x)] · δ−1

for δ << x, the above expression for the model may be
written

log[E (ni)] ≈ log(2liw) +
[

d log pi

dπ

]
π=π̂y

+ Xiβ, (3)

assuming that the detection function parameter estimates
(π̂y) are fairly close to the unknown true values. The
[ d log pi

dπ
] · γ and Xiβ have identical shape (i.e., they are

both matrices dotted with vectors). The matrix of first
derivatives may be thought of as another design matrix
and γ as a vector of unknown parameters. The distribu-
tional properties of both γ and β are known and are given
by γ ∼ N (0,−H−1

π ) and β ∼ N (0,θS−1), whereHπis the
Hessian from maximizing the likelihood of the detection
function from the line-transect data, S is the penalty ma-
trix associated with the smoother, and θ is the smooth-
ing parameter vector (to be estimated). Thus, γ and β

operate similarly; the only difference is that the smooth-
ing parameter, or penalty, for γ is fixed in advance (it
equals one), whereas for β, the smoothing parameter
(vector) needs to be estimated. Thus, the spatial model
comprised a smooth of location, an offset representing
log(effective area), and a random-effect term (the matrix
of first derivatives from estimation of the detection func-
tion) with precision determined by the supplied Hessian
matrix.

Within the R package mgcv (Wood 2008), it is possible
to fit such a model with the paraPen argument to gam to
specify the first derivative term. Nevertheless, additional
customized R code was necessary to fit the model de-
scribed above. This code was needed because the scale
parameter in the spatial model was unknown (because
we assumed a Tweedie distribution for the response)
and because the smoothing parameters in gam were de-
fined relative to the scale parameter. To force gam into
use of the fixed penalty we required, we implemented a
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numerical routine to optimize the gam fit over the scale
parameter, adjusting the smoothing parameter for γ in
each iteration so that its absolute value would always be
one.

Population Model

We developed a population model to find lower bounds
on the past and current abundance of Chilean blue
whales. The model incorporated our minimum abun-
dance estimate, known catches, and likely population
growth rates for large whales. We assumed that likely
population growth rate came from a normal distribu-
tion with a mean of 6.20% (SD 2.90) obtained from
a meta-analysis of maximum intrinsic growth rates of
large cetacean species recovering from exploitation
(Punt & Allison 2010). We further bounded popula-
tion growth rates between 0% and 11.8%; the upper
bound corresponded to the maximum estimated pop-
ulation growth rate for humpback whales (Megaptera

novaeangliae) (Zerbini et al. 2010). We developed two
alternative catch series (C. Allison, personal communica-
tion). The first catch series included only catches taken
from boats returning their catches to Chilean land sta-
tions for processing (hereafter Chilean catch assump-
tion), and the second catch series included all regional
catches, including catches from pelagic whalers (whales
processed on board) that were categorizedas “Chile,”
“Peru,” and “Chile/Peru/Ecuador” (hereafter southeast-
ern Pacific catch assumption). We assumed catches of un-
specified species in Chilean waters (in years 1908–1911,
1913, 1927, 1934–1935; total 1229 whales) included
31.5% blue whales—the average over 1912–1926
(Van Waerebeek et al. 1997).

We applied the standard population dynamics model
used by the IWC for large baleen whales, which is a gen-
eralized logistic model with z = 2.39, thus ensuring that
maximum sustainable catch (yield) occurs at 60% of pre-
exploitation abundance. The model has two free parame-
ters: r, the intrinsic (or maximum) growth rate obtained
from the meta-analysis, and K, the pre-exploitation abun-
dance (or carrying capacity). Under this formulation, K

must be estimated to ensure the modeled abundance in
1997 equals the abundance estimate:

N1905=K and Nt+1 = Nt+r Nt

(
1−

(
Nt

K

)z)
−Ct ,(4)

where Nt is abundance and Ct is the catch in year t.
This assessment used a Monte Carlo procedure. First,

we generated a single population size N1997 from the
abundance distribution, and generated a single rate of in-
crease r from the rate-of-increase distribution. We then
found the corresponding value of K that resulted in a
model-predicted abundance equal to N1997 in 1997. This
procedure was repeated to produce 10,000 abundance

trajectories, from which median and 95% probability in-
tervals could be obtained for abundance over time.

Results

Distribution and Abundance Estimates

Most sightings of blue whales were in the central part
of the survey area, between about 26 and 33◦S, although
blue whales were sighted farther north and farther south
(Fig. 1). The linear distance traveled by the survey ves-
sel was 8354 km, within an area of 546,900 km2. The
selected detection function was a half-normal function
with a truncation distance of 5.6 km (3 nautical miles)
(Fig. 2), which yielded an estimated effective strip half-
width of 2.8 km (1.5 nautical miles). Thus, the area effec-
tively searched covered about 8.5% of the study area. The
model-based estimate of whale abundance in the survey
area (Fig. 3), excluding areas covered during transit legs,
was 303 (95% CI 176–625).

Preliminary Population Model

Total catches were 4288 from Chile alone and 5782 from
the southeastern Pacific. The southeastern Pacific esti-
mate is similar to a previous estimate of 5878 (Van Waere-
beek et al. 1997). Except for a gap during World War II
(1939–1944), catches levels were consistent from the
1910s to the 1960s (Fig. 4).

Minimum population trajectories from the logistic
model (Fig. 4) showed that abundance declined consis-
tently from pre-exploitation abundance (K) of 2000–6200
between the early 1900s and 1940, stabilized or increased
during World War II, and then declined greatly in the
1950s and 1960s, at which point whaling ended and
the population stabilized or increased from the 1970s
to the present. When we assumed our minimum abun-
dance estimate applied to the entire population, the pop-
ulation was at a minimum of 5–18% of pre-exploitation
levels in 1997–1998 under the Chilean catch assumption
and at 4–14% of pre-exploitation levels under the south-
eastern Pacific catch assumption (Fig. 5). These sample
trajectories represent minimum abundances because the
1997–1998 abundance estimate referred to only a portion
of the total population.

Discussion

Our abundance estimate and population trajectories for
Chilean blue whales allowed us to compare their current
status with the status of Antarctic blue whales. Although
the survey covered much of the blue whale habitat within
Chilean waters, we know the survey did not cover the full
geographic extent of the population. Consequently, our
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Figure 3. Predicted density surface from the spatial

model of blue whale density in the survey region

(small gray circles, survey effort by segment; filled

black circles, whale sightings [scaled by pod size =
1–3]; light gray shading, highest densities).

results place only a lower limit on the current abundance
of the population (303, 95% CI 176–625).

Comparison of the current abundance of Chilean blue
whales (minimum of 4–18% of pre-exploitation levels)
with the current abundance of Antarctic blue whales
sheds light on which subspecies of blue whale occurs off
the coast of Chile. Abundance of Antarctic blue whales
overall and in their austral winter whaling grounds off
Saldanha Bay and Durban, South Africa, was reduced by
hunting to a low of <500 individuals in the early 1970s
(<0.15% of pre-exploitation abundance), and Antarctic
blue whales currently number about 2000 (<1% of pre-

exploitation levels) (Branch & Butterworth 2001; Branch
et al. 2004; Branch 2007). If Chilean blue whales were
part of the Antarctic population, one would expect simi-
lar proportional changes in abundance. Instead, our cur-
rent minimum estimates were much higher (>6.8% of
pre-exploitation levels). Additionally, when we exam-
ined the proportion of blue whales among catches of
all species in the IWC catch database, we found that this
proportion decreased by >99% off Saldanha Bay (from
36.1% in 1913–1939 to 0.1% in 1952–1967) and by 97%
off Durban (from 9.8 to 0.3%), but declined 67% off Chile
(from 23.5 to 7.7%). In 1952–1967 blue whale catches
were <6/year off Saldanha Bay and Durban, but were
130/year off Chile. Although catch estimates are affected
by factors other than abundance, these data together with
the comparison in current status provide strong evidence
that Chilean blue whales and Antarctic blue whales be-
long to separate populations and perhaps subspecies.
Further support for this division comes from length fre-
quency data (Branch et al. 2007a), geographic separation
of populations (Branch et al. 2007b), population genetics
(Conway 2005; LeDuc et al. 2007), and acoustic detec-
tions of individuals (McDonald et al. 2006; Buchan et al.
2010). Our abundance estimate is a minimum because
the survey did not cover the inshore waters of Chile, wa-
ters farther offshore than the economic exclusive zone,
or waters south of 38◦S (except for the transits) and north
of 18◦S in Ecuador and Peru. Subsequent findings of a ma-
jor feeding and nursing ground in the Chiloé–Corcovado
region, south and inshore of the survey area, indicate that
a large number of blue whales were probably missed by
the survey (Hucke-Gaete et al. 2003; Galletti Vernazzani
et al. 2006). Given these findings, the total abundance
of Chilean blue whales is probably substantially greater
than our survey and model estimate. Furthermore, the
SOWER survey was carried out during an El Niño event,
when the distribution of blue whales may have extended
well inshore of our study area.

Implied Status of Southeast Pacific Blue Whales

We fitted simple generalized logistic models to the catch
series to assess the status (i.e., abundance relative to
pre-exploitation levels) of blue whales in the region. If
it is conservatively assumed that the baseline estimate
applied to the entire population, then the population
was at a minimum of 5–18% of pre-exploitation levels
in 1997 under the Chilean catch assumption and at a
minimum of 4–14% of pre-exploitation levels under the
southeastern Pacific catch assumption. Nevertheless, the
real status is likely better than these results indicate.
As an estimate of southeastern Pacific blue whales, our
results are further biased low because blue whales are
present off Peru and Ecuador at the same time of the year
(Donovan 1984; Ramirez 1985), but our model-based es-
timate did not take distribution farther to the north into
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Figure 4. Historical catches of blue whales from Chilean waters (gray bars) and additional catches from broader

regions within the southeastern Pacific (black bars, reported as either Peru or Chile/Ecuador/Peru).

account. It is not clear which catch series is the best
to use for population modeling because the relation be-
tween the area from which catches from Chile, Peru, and
Ecuador were taken and the area of the current survey
remains unknown. Including Peru and Ecuador catches
therefore resulted in further negative bias of the current
status of the population of Chilean blue whales.

Abundance Estimates of a Rare Species

The problems we faced are inherent in the study of rare
species; therefore, the solutions we developed are trans-
ferable to other species for which it is difficult to acquire
large numbers of sightings from line-transect surveys. We
illustrate these analytical problems with a blue whale case
study, but the analytical methods we propose can also
be used to study terrestrial and marine mammals, birds,
fishes, reptiles, and plants (Thomas et al. 2010). There
is a great deal of advice available for dealing with zero-
inflated data (reviewed in Thompson [2004] and Ellison
& Agrawal [2005]). There is less statistical advice on what
to do when there will never be more than a few sightings,
acoustic detections, or other observations to model. In
cases where there is little information on geographic dis-
tribution prior to conducting a survey, adaptive sampling
(whether formal or ad hoc) may be needed to increase
sample size in the field whenever animals are seen. The
trade-off, however, is that analyses will be complicated
when rules of systematic, randomized, or adaptive sam-

pling are violated. The key strength of our approach is
its ability to produce an estimate of abundance from data
that might otherwise only be used to calculate simple
encounter rates along the surveyed track lines. If there
are reasons to expect that spatial patterns in distribution
will be similar in the future, then the resulting density
surface can be used to design future surveys. By allocat-
ing more effort to regions with higher densities and less
effort to regions with lower densities, future surveys be-
come more cost-effective because for the same amount
of survey effort, estimates should be more precise (Buck-
land et al. 2001). Perhaps most importantly, our variance
estimator is a simple way to propagate the uncertainty
associated with detection-function modeling to the final
abundance estimate from a spatial model and avoids the
problems associated with bootstrapping spatial models.

We believe that estimating abundance and evaluating
status of rare or endangered taxa requires the combined
skills of both field biologists and statisticians. Biologists
can draw on their understanding of their study animal
to guide collection of field data that best satisfies the as-
sumptions that need to be made in statistical models.
Statisticians, in turn, can offer analytical solutions for
those cases in which, despite the best of intentions, sam-
ple size will always be low. In the best possible outcome,
such collaborations would make field biologists more
quantitative and get statisticians into the field. Although
it is important to develop field protocols and analytical
methods for cases in which sample size will be small
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Figure 5. Projections of abundance of blue whales

from logistic models fitted to the baseline survey

estimate (depicted as a circle with 95% CI) with an

intrinsic rate of increase (distribution of r = 6.20%

[SE 2.90]) and (a) catches reported from shore

stations in Chile (Chilean catch assumption) and (b)

catches reported from the entire southeastern Pacific

(Chile, Peru, Chile/Peru/Ecuador, i.e., southeastern

Pacific catch assumption). The trajectories represent

the minimum status of Chilean blue whales because

the estimate applies to only a portion of the total

population.

(Jaramillo Legorreta et al. 1999), we do not offer false
hope that a tentative abundance estimate generated from
spatially biased samples will fit all purposes. If an applica-
tion hinges on robust estimates of abundance, there is no
substitute for good survey design (Thomas et al. 2007)
coupled with appropriate statistical analyses, whether
the methods are design based or model based. Ultimately,
surveys and analyses such as the one presented here may
be as much about managing expectations as they are
about science.

Acknowledgments

We thank C. Allison of the International Whaling Com-
mission for collating and providing the annual catches

from land stations in the Southern Hemisphere and for
providing the original data from the Chilean IWC/SOWER
surveys. Without the hard work of the captains (T. Tsu-
rui and K. Sakai), crew, and researchers (R. Pitman, P.
Ensor, H. Iwakami, D. Ljungblad, H. Shimada, D. Thiele,
K. van Waerebeek, R. Hucke-Gaete, and G. P. S. Vattier)
on the Chilean IWC SOWER cruise, this work would
not have been possible. Financial support for R.W. came
from grants to support a Canada–U.S. Fulbright Chair po-
sition at University of Washington. We thank A. Read
for encouraging this partnership between biologists and
statisticians to develop solutions to outstanding problems
in cetacean abundance estimation and S. Wood for use-
ful discussions on the inner workings of mgcv-gam. We
thank the editorial team, R. Brownell, and two anony-
mous reviewers for feedback on a previous version of
the manuscript.

Literature Cited

Aguayo, L. A. 1974. Baleen whales off continental Chile. Pages 209–217
in W. E. Schevill, editor. The whale problem: a status report. Harvard
University Press, Cambridge, Massachusetts.

Barlow, J., T. Gerrodette, and G. Silber. 1997. First estimates of vaquita
abundance. Marine Mammal Science 13:44–58.

Branch, T. A., and D. S. Butterworth. 2001. Estimates of abundance
south of 60◦S for cetacean species sighted frequently on the 1978/79
to 1997/98 IWC/IDCR-SOWER sighting surveys. Journal of Cetacean
Research and Management 3:251–270.

Branch, T. A., K. Matsuoka, and T. Miyashita. 2004. Evidence for in-
creases in Antarctic blue whales based on Bayesian modelling. Ma-
rine Mammal Science 20:726–754.

Branch, T. A. 2007. Abundance of Antarctic blue whales south of
60◦S from three complete circumpolar sets of surveys. Journal of
Cetacean Research and Management 9:87–96.

Branch, T. A., E. M.N. Abubaker, S. Mkango, and D. S. Butterworth.
2007a. Separating southern blue whale subspecies based on length
frequencies of sexually mature females. Marine Mammal Science
23:803–833.

Branch, T. A., et al. 2007b. Past and present distribution, densities
and movements of blue whales Balaenoptera musculus in the
Southern Hemisphere and northern Indian Ocean. Mammal Review
37:116–175.

Branch, T. A., and Y. A. Mikhalev. 2008. Regional differences in length
at sexual maturity for female blue whales based on recovered Soviet
whaling data. Marine Mammal Science 24:690–703.

Branch, T. A., Y. A. Mikhalev, and H. Kato. 2009. Separating pygmy
and Antarctic blue whales using long-forgotten ovarian data. Marine
Mammal Science 25:833–854.

Buchan, S. J., L. E. Rendell, and R. Hucke-Gaete. 2010. Preliminary
recordings of blue whale (Balaenoptera musculus) vocalizations in
the Gulf of Corcovado, northern Patagonia, Chile. Marine Mammal
Science 26:451–459.

Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L.
Borchers, and L. Thomas. 2001. Introduction to distance sampling.
Estimating abundance of biological populations. Oxford University
Press, New York.

Candy, S. G. 2004. Modelling catch and effort data using generalised
linear models, the Tweedie distribution, random vessel effects and
random stratum-by-year effects. CCAMLR Science 11: 59–80.

Clarke, C., A. Aguayo, and S. Basulto. 1978. Whale observation and
whale marking off the coast of Chile in 1964. The Scientific Reports
of the Whales Research Institute, Tokyo 30:117–177.

Conservation Biology

Volume 25, No. 3, 2011



Williams et al. 535

Conway, C. A. 2005. Global population structure of blue whales, Bal-

aenoptera musculus ssp., based on nuclear genetic variation. PhD
dissertation. University of California, Davis.

Donovan, G. P. 1984. Blue whales off Peru, December 1982, with spe-
cial reference to pygmy blue whales. Reports of the International
Whaling Commission 34:473–476.

Ellison, A. M., and A. A. Agrawal. 2005. The statistics of rarity. Ecology
86:1079–1080.

Evans, P. G.H., and P. S. Hammond. 2004. Monitoring cetaceans in
European waters. Mammal Review 34:131–156.

Findlay, K., et al. 1998. 1997/1998 IWC-Southern Ocean Whale and
Ecosystem Research (IWC-SOWER) blue whale cruise, Chile. Paper
SC/50/Rep2. International Whaling Commission, Cambridge, United
Kingdom.

Galletti Vernazzani, B., C. Carlson, E. Cabrera, and R. L. Brownell Jr.
2006. Blue, sei and humpback whale sightings during 2006 field
season in northwestern Isla de Chiloe, Chile. Paper SC/58/SH17.
International Whaling Commission, Cambridge, United Kingdom.

Hedley, S. L., S. T. Buckland, D. L. Borchers. 1999. Spatial modelling
from line transect data. Journal of Cetacean Research and Manage-
ment 1:255–264.

Hedley, S. L., and S. T. Buckland. 2004. Spatial models for line tran-
sect sampling. Journal of Agricultural, Biological and Environmental
Statistics 9:181–199.

Hucke-Gaete, R., L. P. Osman, C. A. Moreno, K. P. Findlay, and D. K.
Ljungblad. 2003. Discovery of a blue whale feeding and nursing
ground in southern Chile. Biology Letters 271:S170–S173.

Ichihara, T. 1966. The pygmy blue whale, Balaenoptera musculus

brevicauda, a new subspecies from the Antarctic. Pages 79–111 in
K. S. Norris, editor. Whales, dolphins, and porpoises. University of
California Press, Berkeley.

IUCN (International Union for Conservation of Nature). 2001. IUCN
Red List categories and criteria: version 3.1. Species Survival Com-
mission. IUCN, Gland, Switzerland, and Cambridge, United King-
dom.

Jaramillo Legorreta, A. M., L. Rojas Bracho, and T. Gerrodette. 1999. A
new abundance estimate for vaquitas: first step for recovery. Marine
Mammal Science 15: 957–973.

Joergensen, B. 1987. Exponential dispersion models. Journal of the
Royal Statistical Society B 49:127–162.

LeDuc, R. G., A. E. Dizon, M. Goto, L. A. Pastene, H. Kato, S., Nishiwaki,
C. A. LeDuc, and R. L. Brownell. 2007. Patterns of genetic variation
in Southern Hemisphere blue whales and the use of assignment
test to detect mixing on the feeding grounds. Journal of Cetacean
Research and Management 9:73–80.

Marques, F. F. C., and S. T. Buckland. 2003. Incorporating covariates
into standard line transect analyses. Biometrics 59:924–935.

McArdle, B. H. 1990. When are rare species not there? Oikos
57:276–277.

McDonald, M. A., J. A. Hildebrand, and S. L. Mesnick. 2006. Biogeo-
graphic characterization of blue whale song worldwide: using song
to identify populations. Journal of Cetacean Research and Manage-
ment 8:55–65.

Punt, A. E., and C. Allison. 2010. Appendix 2. Revised outcomes from
the Bayesian meta-analysis, Annex D: report of the sub-committee on
the revised management procedure. Journal of Cetacean Research
and Management 11(Suppl. 2):129–130.

Ramı́rez, P. 1983. Capturas y observaciones de la ballena azul Bal-

aenoptera musculus, L., en Paita-Perú 1961–1966 y 1975–1982.
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